A Fast Independent Component Analysis Algorithm for Improper Quaternion Signals

نویسندگان

  • Soroush Javidi
  • Danilo P. Mandic
چکیده

An extension of the FastICA algorithm is proposed for the blind separation of both Q-proper and Q-improper quaternionvalued signals. This is achieved by maximising a negentropy-based cost function, and is implemented using the Newton method in the augmented quaternion statistics framework. It is shown that the use of augmented statistics and the associated widely linear modeling provide theoretical and practical advantages over standard models. Simulations using both benchmark and real-world signals support the approach. Index Terms Independent Component Analysis (ICA), augmented quaternion statistics, quaternion widely linear modelling, quaternion noncircularity, quaternion blind source separation

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A class of quaternion valued affine projection algorithms

The strictly linear quaternion valued affine projection algorithm (QAPA) and its widely linear counterpart (WLQAPA) are introduced, in order to provide fast converging stochastic gradient learning in the quaternion domain, for the processing of both second order circular (proper) and second order noncircular (improper) signals. This is achieved based on the recent advances in augmented quaterni...

متن کامل

Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier

Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...

متن کامل

کاربرد الگوریتم جداسازی کور منابع در جداسازی سیگنال‌های گفتار و موسیقی

In this paper, the application of the Independent Component Analysis In this paper, the application of the Independent Component Analysis technique in speech-music separation is discussed. The separation algorithm is in the time domain. It needs the score function estimation to minimize the mutual information. For estimating score function, sufficient samples of the mixed (speech-music) signals...

متن کامل

A fast xed-point algorithm for independent component analysis of complex valued signals

Separation of complex valued signals is a frequently arising problem in signal processing. For example, separation of convolutively mixed source signals involves computations on complex valued signals. In this article it is assumed that the original, complex valued source signals are mutually statistically independent, and the problem is solved by the independent component analysis (ICA) model....

متن کامل

A Novel Frequency-Domain Independent Component Analysis Approach for Wireless Communications

In this paper, a novel Frequency-Domain Independent Component Analysis (ICA-F) approach is proposed to blindly separate and deconvolve the convolutive combinations of digitally modulated signals in wireless communications. This approach relies on the simple observation that if signals are independent in one domain, their corresponding components in a linearly transformed domain are also indepen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010